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Chapter 8: Introduction to Simple Linear
Regression

Statistics for Social Work Il



Line fitting, residuals, and
correlation



Modeling numerical variables

In this unit we will learn to quantify the relationship between two
numerical variables, as well as modeling numerical response
variables using a numerical or categorical explanatory variable.



Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate
rate in all 50 US states and DC and the % of residents who live below
the poverty line (income below $30,000 for a family of 4 in 2024).
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Poverty vs. HS graduate rate

The scatterplot below shows the relationship between HS graduate
rate in all 50 US states and DC and the % of residents who live
below the poverty line.
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5 ‘ Explanatory variable*
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linear, negative, moderately
strong
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The linear model for predicting poverty from high school graduation
rate in the US is

poverty = 64.78 — 0.62 * HS 4144

The “hat” is used to signify that this is an estimate.



The high school graduate rate in Georgia is 85.1%. What poverty
level does the model predict for this state?



The high school graduate rate in Georgia is 85.1%. What poverty
level does the model predict for this state?

64.78 — 0.62 %« 85.1 = 12.018



Eyeballing the line

Which of the follow-
ing appears to be
the line that best fits
the linear relation-
ship between % in
poverty and % HS
grad? Why?

% in poverty

% HS grad



Eyeballing the line

Which of the follow-
ing appears to be
the line that best fits
the linear relation-
ship between % in
poverty and % HS
grad? Choose one.
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% in poverty

% HS grad



Residuals are the leftovers from the model fit: Data = Fit + Residual
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Residuals (cont.)

Residual
Residual is the difference between the observed (y;) and predicted
Pi-

e =yi— i
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Residuals (cont.)

Residual

Residual is the difference between the observed (y;) and predicted
Pi-

e =yi—Ji

e % living in poverty in
DC is 5.44% more
than predicted.

% HS grad 7



Residuals (cont.)

Residual
Residual is the difference between the observed (y;) and predicted
Pi-

e =yi— i

e % living in poverty in
DC is 5.44% more
than predicted.

e % living in poverty in
Rl is 4.16% less than
predicted.

% HS grad



Quantifying the relationship

e Correlation describes the strength of the association
between two variables.
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Quantifying the relationship

e Correlation describes the strength of the association
between two variables.

o It takes values between -1 (perfect negative) and +1 (perfect
positive).

e A value of 0 indicates no linear association.



Guessing the correlation

Which of the following is the best guess for the correlation between
% in poverty and % HS grad?
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Guessing the correlation

Which of the following is the best guess for the correlation between
% in poverty and % female householder, no husband present?
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Assessing the correlation

Which of the following is has the strongest correlation, i.e. correla-
tion coefficient closest to +1 or -17?
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Assessing the correlation

Which of the following is has the strongest correlation, i.e. correla-
tion coefficient closest to +1 or -17?

(b) —
correlation
means linear

association

(© (d)

TIF: If the correlation coefficient is O there is no association
between the two variables. »



Fitting a line by least squares
regression



An objective measure for finding the best line

e We want a line that has small residuals:
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An objective measure for finding the best line

e We want a line that has small residuals:
1. Option 1: Minimize the sum of magnitudes (absolute values) of

residuals
let] + lea| + -+ + ey

2. Option 2: Minimize the sum of squared residuals — least

squares
2 2 2
ejte;+---+e,

e Why least squares?
1. Most commonly used
2. Easier to compute by hand and using software
3. In many applications, a residual twice as large as another is
usually more than twice as bad



The least squares line: Population Parameters

y =pPo+pix

e y: Predicted value of the response variable, y
e f3o: Intercept, parameter

e by Intercept, point estimate
e 31: Slope, parameter

e b;: Slope, point estimate

e x: Explanatory variable



Given...

18+

16 % HS grad % in poverty
g () »
8127 mean x=8601  y=11.35
1] . . sd 5¢ = 3.73 5, =3.1

i: correlation R=-0.75
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Slope

The slope of the regression can be calculated as
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Slope
The slope of the regression can be calculated as

S
by = 2R

In context...
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Slope

The slope of the regression can be calculated as

A
b = ZR
Sx
In context... 31
=——x-0.75=-0.62
br=373x
Interpretation

For each additional % point in HS graduate rate, we would expect
the % living in poverty to be lower on average by 0.62% points.
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Intercept

The intercept is where the regression line intersects the y-axis.
The calculation of the intercept uses the fact the a regression line

always passes through (x, ).

bo =y —bix
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Intercept

The intercept is where the regression line intersects the y-axis.
The calculation of the intercept uses the fact the a regression line
always passes through (x, ).

bo =y —bix

70’\ intercept
60

250+

by = 11.35 — (=0.62) x 86.01
= 64.68

Q

£ 309

R 204
10

0 20 40 60 80 100
% HS grad
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Which of the following is the correct interpretation of the intercept?

(a) For each % point increase in HS graduate rate, % living in
poverty is expected to increase on average by 64.68%.

(b) For each % point decrease in HS graduate rate, % living in
poverty is expected to increase on average by 64.68%.

(c) Having no HS graduates leads to 64.68% of residents living
below the poverty line.

(d) States with no HS graduates are expected on average to have
64.68% of residents living below the poverty line.

(e) In states with no HS graduates % living in poverty is expected
to increase on average by 64.68%.

24
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More on the intercept

Since there are no states in the dataset with no HS graduates, the
intercept is of no interest, not very useful, and also not reliable
since the predicted value of the intercept is so far from the bulk of
the data.

70’\ intercept

0 20 40 60 80 100
% HS grad
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Regression line

% in poverty = 64.68 — 0.62 % HS grad

18
16

2 14
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Interpretation of slope and intercept

e Intercept: Whenx =0, yis
expected to equal the
intercept.

e Slope: For each unitin x, y
is expected to increase /
decrease on average by the
slope.

Note: These statements are not causal, unless the study is a randomized

controlled experiment.

27



e Using the linear model to predict the value of the response
variable for a given value of the explanatory variable is called
prediction, simply by plugging in the value of x in the linear
model equation.

e There will be some uncertainty associated with the predicted
value.

80 85 90

% HS grad 28



Extrapolation

e Applying a model estimate to values outside of the realm of
the original data is called extrapolation.

e Sometimes the intercept might be an extrapolation.

I intercept
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% in poverty
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Examples of extrapolation

26.25 -
25.00 -

23.75 A

Men’s Age at First Marriage

2250 -
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Examples of extrapolation

One-Minute World News

Africa

Americas

Last Updated: Thursday, 30 September, 2004, 04:04 GMT 05:04 UK
B2 E-mail this to a friend & Printable version

Women 'may outsprint men by 2156’

Women sprmters may be
outrunning men in the 2156

Europe
Middle East
South Asia

uk]
England
Northern Ireland
Scotland
Wales
UK Politics
Education
Magazine
Business
Health
Science &
Environment
Technology
Entertainment
Also in the news

Olympics if they conti to
cluse the gap at the rate
they are doing, according to
scientists. b

An Oxford University study
found that women are running
faster than they have ever
done over 100m.

Nomen are SE( to become the ﬂDm\I"aI"l
sprinters

At their current rate of improvement, they should overtake
men within 150 years, said Dr Andrew Tatem.

The study, comparing winning times for the Olympic 100m
since 1900, is published in the journal Nature.

However, former British Olympic sprinter Derek Redmond
told the BBC: "I find it difficult to believe.

"I can see the gap closing between men and women but I

can't necessarily see it being overtaken because mens' times
are also going to improve."

31



Examples of extrapolation

Momentous sprint at the 2156 Olympics?

Women sprinters are closing the gap on men and may one day overtake them.

Winning time (s)

6

2 e YR ITIELNR®ISLNRTLENY

Er583888838582¢ 2t 8

- - - - 8NN NN NN NNN NN
Year

Figure 1 Tha winning Qlympic 100-metra sprint times for man (blus paints) and wemen (rad paints), with superimposad bast-fit inear ragres-
sion lines (solid black lines) and coefficients of determination. The regression lines are extrapolated (broken biue and red lines for men and
woman, respectivaly) and 95% confidenca intervals (dotted black lines) based on the available paints are superimposad. The projections intar-
sact just before the 2156 Olympics, when the winning wornen's 100-metre sprint time of 8.079 s will be faster than the men's at 8.098 5.

https://www.nature.com/articles/431525a.pdf 32



e The strength of the fit of a linear model is most commonly
evaluated using R”.
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The strength of the fit of a linear model is most commonly
evaluated using R”.

R? is calculated as the square of the correlation coefficient.

It tells us what percent of variability in the response variable is
explained by the model.

The remainder of the variability is explained by variables not
included in the model or by inherent randomness in the data.
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The strength of the fit of a linear model is most commonly
evaluated using R”.

R? is calculated as the square of the correlation coefficient.

It tells us what percent of variability in the response variable is
explained by the model.

The remainder of the variability is explained by variables not
included in the model or by inherent randomness in the data.

For the model we’ve been working with, R = (=0.75) = 0.56.
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Interpretation of R*

Which of the below is the correct interpretation of R = —0.75, R*> = 0.56?

(a) 56% of the variability in the % of HG
graduates among the 51 states is
explained by the model.

(b) 56% of the variability in the % of -]
residents living in poverty among the g1
51 states is explained by the model. i‘ﬁ
(c) 56% of the time % HS graduates ]
predict % living in poverty correctly. 2 %H:f,rad %

(d) 75% of the variability in the % of
residents living in poverty among the
51 states is explained by the model.
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(a) 56% of the variability in the % of HG
graduates among the 51 states is
explained by the model.

(b) 56% of the variability in the % of -]
residents living in poverty among the 5145
51 states is explained by the model. i‘ﬁ
(c) 56% of the time % HS graduates ]
predict % living in poverty correctly. @ %H:‘gm %

(d) 75% of the variability in the % of
residents living in poverty among the
51 states is explained by the model.
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Types of outliers in linear
regression



Types of outliers

How do outliers influence the
least squares line in this plot?

To answer this question think of
where the regression line would
be with and without the outlier(s).
Without the outliers the

-104

regression line would be steeper, =

and lie closer to the larger group

of observations. With the outliers Ch K )

the line is pulled up and away O TERR e e

from some of the observations in
the larger group.
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Types of outliers

How do outliers influence
the least squares line in
this plot?

2l e e
‘PP %

0- !‘";,‘?‘:
F &

-2 )
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Types of outliers

How do outliers influence
the least squares line in
this plot?

Without the outlier there is
no evident relationship
between x and y.
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Some terminology

e Outliers are points that lie away from the cloud of points.
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Some terminology

e Outliers are points that lie away from the cloud of points.

e Outliers that lie horizontally away from the center of the cloud
are called high leverage points.

e High leverage points that actually influence the slope of the
regression line are called influential points.

e In order to determine if a point is influential, visualize the
regression line with and without the point. Does the slope of
the line change considerably? If so, then the point is
influential. If not, then it?s not an influential point.
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Influential points

Data are available on the log of the surface temperature and the
log of the light intensity of 47 stars in the star cluster CYG OB1.

= = w/ outliers
6.0 —— wi/o outliers

log(light intensity)

T T T \
3.6 3.8 4.0 4.2 4.4 4.6

log(temp)
38



Types of outliers

Which of the below best
describes the outlier?

(a) influential

(b) high leverage

(c) none of the above

(d) there are no outliers 21 . St O
o] e ¢ Wirohhg
-2 . o
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Types of outliers

154

Does this outlier influence
the slope of the regression
line?

3 31

40



Types of outliers

154

Does this outlier influence
the slope of the regression
line?

Not much... 5
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Which of following is true?

Influential points always change the intercept of the
regression line.

Influential points always reduce R?.

It is much more likely for a low leverage point to be influential,
than a high leverage point.

When the data set includes an influential point, the
relationship between the explanatory variable and the
response variable is always nonlinear.

None of the above.
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Which of following is true?

(a) Influential points always change the intercept of the
regression line.

(b) Influential points always reduce R>.

(c) ltis much more likely for a low leverage point to be influential,
than a high leverage point.

(d) When the data set includes an influential point, the
relationship between the explanatory variable and the
response variable is always nonlinear.

(e)
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Recap (cont.)

R = 0.08, R*> = 0.0064 R =0.79,R*> = 0.6241

42



Inference for linear regression



Nature or nurture?

In 1966 Cyril Burt published a paper called “The genetic determination of
differences in intelligence: A study of monozygotic twins reared together
and apart”. The data consist of IQ scores for [an assumed random
sample of] 27 identical twins, one raised by foster parents, the other by
the biological parents.

R = 0.882

T T
70 80 90 100 110 120 130

biological 1Q 43



Which of the following is false?

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.20760 9.29990 0.990 0.332
bioIQ 0.90144 0.09633 9.358 1.2e-09

Residual standard error: 7.729 on 25 degrees of freedom
Multiple R-squared: 0.7779,Adjusted R-squared: 0.769
F-statistic: 87.56 on 1 and 25 DF, p-value: 1.204e-09

(a) Additional 10 points in the biological twin’s 1Q is associated
with additional 9 points in the foster twin’s 1Q, on average.

(b) Roughly 78% of the foster twins’ IQs can be accurately
predicted by the model.

(c) The linear model is fosterIQ = 9.2 + 0.9 X biolQ.

(d) Foster twins with IQs higher than average IQs tend to have
biological twins with higher than average Qs as well.
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Testing for the slope

Assuming that these 27 twins comprise a representative sample of
all twins separated at birth, we would like to test if these data pro-
vide convincing evidence that the 1Q of the biological twin is a sig-
nificant predictor of IQ of the foster twin. What are the appropriate

hypotheses?

(@) Hy:by=0;Hy :byg#0
(b) Ho:Bo=0;Hy :Bo#0
() Hy: b1 =0;Hs : b1 #0
(d) Hy:B1=0;Hy :B1 #0
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Testing for the slope (cont.)

Estimate  Std. Error tvalue Pr(>lt|)
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36  0.0000
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Testing for the slope (cont.)

Estimate  Std. Error tvalue Pr(>lt|)
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e We always use a -test in inference for regression.
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Testing for the slope (cont.)

Estimate  Std. Error tvalue Pr(>lt|)
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36  0.0000

e We always use a -test in inference for regression.

P point estimate—null value
Test statistic, T = P e vae

e Point estimate = b; is the observed slope.

e SE), is the standard error associated with the slope.
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Testing for the slope (cont.)

Estimate  Std. Error tvalue Pr(>lt|)
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36  0.0000

We always use a #-test in inference for regression.

P point estimate—null value
Test statistic, T = P e vae

Point estimate = b, is the observed slope.

SE}, is the standard error associated with the slope.

Degrees of freedom associated with the slope is df = n - 2,
where n is the sample size.
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Testing for the slope (cont.)

Estimate  Std. Error tvalue Pr(>lt|)
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36  0.0000

We always use a #-test in inference for regression.

P point estimate—null value
Test statistic, T = P e vae

Point estimate = b, is the observed slope.

SE}, is the standard error associated with the slope.

Degrees of freedom associated with the slope is df = n - 2,
where n is the sample size.
We lose 1 degree of freedom for each parameter we estimate, and in

simple linear regression we estimate 2 parameters, o and ;.
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Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>|t])
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.0963 0.0000
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Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>|t])
(Intercept) 9.2076 9.2999 0.99 0.3316
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Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>|t])
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.0963 0.0000

0.0963
27 -2=25

daf
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Testing for the slope (cont.)

Estimate Std. Error tvalue Pr(>|t])
(Intercept) 9.2076 9.2999 0.99 0.3316

biolQ 0.0963 0.0000
-0
T = _— =
0.0963
df = 27-2=25

p — value P(T| > ) < 0.01
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% College graduate vs. % Hispanic in LA

What can you say about the relationship between % college gradu-
ate and % Hispanic in a sample of 100 zip code areas in LA?

Education: College graduate Race/Ethnicity: Hispanic

-1

Y @ i

0.2

0.4

Freeways
= No data

0.0
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% College educated vs. % Hispanic in LA - another look

What can you say about the relationship between of % college grad-
uate and % Hispanic in a sample of 100 zip code areas in LA?
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% College educated vs. % Hispanic in LA - linear model

Which of the below is the best interpretation of the slope?

Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.7290 0.0308 23.68 0.0000
%Hispanic  -0.7527 0.0501 -15.01 0.0000

(a) A 1% increase in Hispanic residents in a zip code area in LA
is associated with a 75% decrease in % of college grads.

(b) A 1% increase in Hispanic residents in a zip code area in LA
is associated with a 0.75% decrease in % of college grads.

(c) An additional 1% of Hispanic residents decreases the % of
college graduates in a zip code area in LA by 0.75%.

(d) In zip code areas with no Hispanic residents, % of college
graduates is expected to be 75%.
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% College educated vs. % Hispanic in LA - linear model

Do these data provide convincing evidence that there is a statis-
tically significant relationship between % Hispanic and % college
graduates in zip code areas in LA?

Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.7290 0.0308 23.68 0.0000
hispanic ~ -0.7527 0.0501 -15.01 0.0000

How reliable is this p-value if these zip code areas are not randomly
selected?
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% College educated vs. % Hispanic in LA - linear model

Do these data provide convincing evidence that there is a statis-
tically significant relationship between % Hispanic and % college
graduates in zip code areas in LA?

Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.7290 0.0308 23.68 0.0000
hispanic  -0.7527 0.0501 -15.01 0.0000

Yes, the p-value for % Hispanic is low, indicating that the data
provide convincing evidence that the slope parameter is different
than 0.

How reliable is this p-value if these zip code areas are not randomly
selected?
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% College educated vs. % Hispanic in LA - linear model

Do these data provide convincing evidence that there is a statis-
tically significant relationship between % Hispanic and % college
graduates in zip code areas in LA?

Estimate Std. Error tvalue Pr(>|t])
(Intercept) 0.7290 0.0308 23.68 0.0000
hispanic  -0.7527 0.0501 -15.01 0.0000

Yes, the p-value for % Hispanic is low, indicating that the data
provide convincing evidence that the slope parameter is different
than 0.

How reliable is this p-value if these zip code areas are not randomly
selected?

Not very... -



Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate + ME
and the degrees of freedom associated with the slope in a simple linear
regression is n—2. Which of the below is the correct 95% confidence inter-
val for the slope parameter? Note that the model is based on observations

from 27 twins.

Estimate  Std. Error tvalue Pr(>lt])
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36  0.0000

(@) 9.2076+ 1.65 x 9.2999
(b) 0.9014 = 2.06 x 0.0963
(c) 0.9014 + 1.96 x 0.0963
(d)

d) 9.2076 +1.96 x 0.0963
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Confidence interval for the slope

Remember that a confidence interval is calculated as point estimate + ME
and the degrees of freedom associated with the slope in a simple linear
regression is n—2. Which of the below is the correct 95% confidence inter-
val for the slope parameter? Note that the model is based on observations

from 27 twins.

Estimate  Std. Error tvalue Pr(>lt])
(Intercept) 9.2076 9.2999 0.99 0.3316
biolQ 0.9014 0.0963 9.36  0.0000

n o= 27 df=271-2=25
95% : 13, = 2.06
0.9014 + 2.06x 0.0963
0.7 , 1.1

a) 9.2076 + 1.65 x 9.2999

(a)

(b) 0.9014 +2.06 x 0.0963
(c) 0.9014 + 1.96 x 0.0963
(d)

d) 9.2076 + 1.96 x 0.0963
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e Inference for the slope for a single-predictor linear regression
model:
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by — null value
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e Inference for the slope for a single-predictor linear regression
model:
e Hypothesis test:

by — null value
T=—— df =n-2
SE), f=n

e Confidence interval:
b1 + t;f:n—ZSEhl
e The null value is often 0 since we are usually checking for any

relationship between the explanatory and the response
variable.
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variable.

e The regression output gives by, SEj,, and two-tailed p-value
for the t-test for the slope where the null value is 0.
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e Inference for the slope for a single-predictor linear regression
model:
e Hypothesis test:
by — null value

7= AT EVANE e 2
SE), f=n

e Confidence interval:
b1 + t;f:n—ZSEhl

e The null value is often 0 since we are usually checking for any
relationship between the explanatory and the response
variable.

e The regression output gives by, SEj,, and two-tailed p-value
for the t-test for the slope where the null value is 0.

e We rarely do inference on the intercept, so we’ll be focusing

on the estimates and inference for the slope. >



e Always be aware of the type of data you're working with:
random sample, non-random sample, or population.
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e Always be aware of the type of data you're working with:
random sample, non-random sample, or population.

e Statistical inference, and the resulting p-values, are
meaningless when you already have population data.
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e Always be aware of the type of data you're working with:
random sample, non-random sample, or population.

e Statistical inference, and the resulting p-values, are
meaningless when you already have population data.

e If you have a sample that is non-random (biased), inference
on the results will be unreliable.
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e Always be aware of the type of data you're working with:
random sample, non-random sample, or population.

e Statistical inference, and the resulting p-values, are
meaningless when you already have population data.

e If you have a sample that is non-random (biased), inference
on the results will be unreliable.

e The ultimate goal is to have independent observations.
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Conditions for the least squares line

1. Linearity
2. Nearly normal residuals

3. Constant variability



Conditions: (1) Linearity

e The relationship between the explanatory and the response
variable should be linear.


http://www.openintro.org/download.php?file=os2_extra_nonlinear_relationships&referrer=/stat/textbook.php

Conditions: (1) Linearity

e The relationship between the explanatory and the response
variable should be linear.

e Methods for fitting a model to non-linear relationships exist,
but are beyond the scope of this class. If this topic is of
interest, an Online Extra is available on openintro.org covering
new techniques.


http://www.openintro.org/download.php?file=os2_extra_nonlinear_relationships&referrer=/stat/textbook.php

Conditions: (1) Linearity

e The relationship between the explanatory and the response
variable should be linear.

e Methods for fitting a model to non-linear relationships exist,
but are beyond the scope of this class. If this topic is of
interest, an Online Extra is available on openintro.org covering
new techniques.

e Check using a scatterplot of the data, or a residuals plot.



http://www.openintro.org/download.php?file=os2_extra_nonlinear_relationships&referrer=/stat/textbook.php

Anatomy of a residuals plot

A RI:

% HS grad = 81 % in poverty = 10.3
% in poverty = 64.68 — 0.62 = 81 = 14.46
e = % in poverty — % in/pa/erty

=10.3-14.46 = -4.16

% in poverty

T
80 85 90
% HS grad
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Anatomy of a residuals plot

A RI:

% HS grad = 81 % in poverty = 10.3
% in poverty = 64.68 — 0.62 = 81 = 14.46
e = % in poverty — % in/pa/erty

=10.3-14.46 = -4.16

% in poverty

5 W DC:

T
80 85 90
% HS grad

o . % HS grad = 86 % in poverty = 16.8
. = | % in poverty = 64.68 — 0.62 x 86 = 11.36

e = % in poverty — % in/pa/eny

=168-11.36=5.44




Conditions: (2) Nearly normal residuals

e The residuals should be nearly normal.



Conditions: (2) Nearly normal residuals

e The residuals should be nearly normal.
e This condition may not be satisfied when there are unusual
observations that don’t follow the trend of the rest of the data.



Conditions: (2) Nearly normal residuals

e The residuals should be nearly normal.

e This condition may not be satisfied when there are unusual
observations that don’t follow the trend of the rest of the data.

e Check using a histogram.
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Conditions: (3) Constant variability

% in poverty

10 12 14 16 18

e The variability of points

around the least squares
line should be roughly
constant.
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Conditions: (3) Constant variability

e The variability of points
around the least squares
line should be roughly
constant.

% in poverty

e This implies that the
variability of residuals

‘ ‘ ‘ around the 0 line should be

’ . "’ roughly constant as well.
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Conditions: (3) Constant variability
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line should be roughly
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variability of residuals
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Conditions: (3) Constant variability

e The variability of points
around the least squares
line should be roughly
constant.

% in poverty

e This implies that the
variability of residuals
‘ ‘ ‘ around the 0 line should be
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e Check using a residuals
plot.



Checking conditions

What condition is this linear
model obviously violating?

(a) Constant variability
(b) Linear relationship S
(c) Normal residuals
™) ] OOO A
(d) No extreme outliers | o _°_§;@o@gf %, {é)oo ae
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Checking conditions

What condition is this linear
model obviously violating?

(a) Constant variability
(b)
(c) Normal residuals
(d)

Linear relationship

No extreme outliers
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